Speedy Crown | 3y + 4 |
Bemecourt | 645 paths, 58 crosses (closest: 8) |
Peter the Great | 1023 paths, 64 crosses (closest: 8) |
Fandango | 4x + 5x |
Fuschia | 3478 paths, 131 crosses (closest: 9) |
Loudeac | (5+5x) + (6+8) |
Intermede | 120 paths, 26 crosses (closest: 7) |
Speedster | (5+5y) + 6 |
Peter Scott | 54 paths, 15 crosses (closest: 7) |
Belle Poule (Mare) | 240 paths, 34 crosses (closest: 8) |
Guy Axworthy | 504 paths, 45 crosses (closest: 8) |
Scotland | (6+7+7+8+8y) + (7+8+8+9) |
Axworthy | 1050 paths, 65 crosses (closest: 8) |
James Watt | 779 paths, 60 crosses (closest: 9) |
Hambletonian | 105168 paths, 649 crosses (closest: 11) |
Enoch | 28 paths, 11 crosses (closest: 7) |
Hoot Mon | 5 + 6 |
Quo Vadis | (6+7+7) + (8x+8+8+9x+9x) |
Javari | (6x+6) + (7+7x) |
Peter Volo | 56 paths, 15 crosses (closest: 8) |
George Wilkes | 36966 paths, 385 crosses (closest: 10) |
Jongleur | (7x+7+7x+7) + (8x+8x+8+10) |
Sam Williams | 6 + (7x+7+8+8) |
Bolero | (6+6+9) + (7+9) |
Volomite | (7+7+8) + (7+8+9) |
McKinney | 289 paths, 34 crosses (closest: 8) |
Victory Song | (6+6) + 7 |
Junon (Mare) | (7+7+8+8) + (9x+9x+9+9+10x+10x) |
Roya Mckinney (Mare) | (7+8+8+9+9) + (8+9+9+9+10) |
Koenigsberg | (7+7+9+10) + (8+8+9+10) |
Benjamin | 63 paths, 16 crosses (closest: 8) |
Princess Royal (Mare) | 72 paths, 17 crosses (closest: 8) |
Phaeton | 1060 paths, 73 crosses (closest: 10) |
Mr McElwyn | (7+8) + (7+8+9) |
Axtell | 1116 paths, 67 crosses (closest: 9) |
Worthy Boy | 7 + (6+8) |
Beaumanoir | 40 paths, 13 crosses (closest: 8) |
Happy Medium | 1155 paths, 68 crosses (closest: 10) |
Gael | (8x+8) + (7+8+8) |
Dean Hanover | (6+7+7) + 8 |
Dillon Axworthy | (7+8+8+8+9+9) + (9+9+10) |
Guy Wilkes | 884 paths, 60 crosses (closest: 10) |
Spencer | (7+8+9+9) + (8+9+10) |
Narquois | 133 paths, 26 crosses (closest: 9) |
Nervolo Belle (Mare) | 81 paths, 18 crosses (closest: 9) |
Guy McKinney | (7+8+8) + (8+9) |
Sebastopol | 30 paths, 11 crosses (closest: 9) |
Electioneer | 2891 paths, 108 crosses (closest: 10) |
Lady Bunker (Mare) | 3990 paths, 127 crosses (closest: 11) |
Quiproquo II | 7 + 7 |
Chimes | 90 paths, 19 crosses (closest: 9) |
San Francisco | (9+9+10+10) + (8+9+10+11+11) |
Lee Axworthy | 42 paths, 13 crosses (closest: 9) |
Walnut Hall | (8+10+11) + (9x+9+10+10+11+12) |
Bingen | 300 paths, 35 crosses (closest: 9) |
Ontario | 7x + 8 |
Zombro | 35 paths, 12 crosses (closest: 9) |
Beautiful Bells (Mare) | 315 paths, 36 crosses (closest: 10) |
Baron Wilkes | 182 paths, 27 crosses (closest: 10) |
Todd | 48 paths, 14 crosses (closest: 10) |
Kalmia | (9x+9+11) + (10+10+10+11+12+12) |
Esther (Mare) | 35 paths, 12 crosses (closest: 10) |
Valentino | 7x + 9 |
Urgent | (10x+10) + (9+9+10+10+10+11x) |
Nemrod | 9 + (8+9+10x) |
Emily Ellen (Mare) | (9+10+10+10+11+11) + (10+11+11+12) |
Dakota | 8x + (9+11+11) |
Alcantara | 120 paths, 22 crosses (closest: 10) |
May King | 357 paths, 38 crosses (closest: 10) |
Young Miss (Mare) | 357 paths, 38 crosses (closest: 10) |
Onward | 224 paths, 30 crosses (closest: 10) |
Minnehaha (Mare) | 468 paths, 44 crosses (closest: 11) |
Dancourt | (8x+12) + 9 |
Almont | 135 paths, 24 crosses (closest: 11) |
Belwin | (8+9+10x) + 10 |
Red Wilkes | 960 paths, 62 crosses (closest: 10) |
Expressive (Mare) | (9+10+10+10) + (11+11) |
Bellini | (9+10+10+10) + (11+11) |
The Gaiety Girl (Mare) | 56 paths, 15 crosses (closest: 11) |
The Harvester | (9+10) + (10+11) |
Moko | (10+10+11+11+12) + (11+12+12+12+13) |
Reynolds V | 9x + 9x |
Trinqueur | 11 + (9+9+10x+10+10x+11) |
Maggie H. (Mare) | 100 paths, 20 crosses (closest: 11) |
Notelet (Mare) | (10+10+11) + (11+11+12) |
Elyria | (10+10) + (11x+11+12+12) |
Arion | 96 paths, 20 crosses (closest: 12) |
Senlis | 9x + (10+12) |
Harley | 12 paths, 13 crosses (closest: 10) |
Baronmore | (10+12) + (10+11+13) |
Madam Thompson (Mare) | (9+10+10) + 11 |
Wilton | (10+11+12+13+13) + (11+12+13+14) |
Adbell | (10+11+11+11+12x) + (12+12) |
Mamie (Mare) | (10x+11+14+14) + (11+13+13+15) |
Eva (Mare) | (10+11+11+11) + (12+12) |
Expectation (Mare) | (11+11+11) + (12+12) |
Prodigal | (11x+11+11) + 12 |