| 
Pedigree complete in | 5
 gen |  
| 
Pedigree depth | 
16
 gen |  
| Pedigree Completeness Index (5 gen) | 
0,99
 |  
 
 
| 
Generation interval (average, 4 gen) | 12,80
 |  
| 
Ancestor birthyear (average, 4 gen) | 1937,33
 |  
 
 
| 
French Trotter | 
0,00
 % |  
| 
Russian Trotter | 
0,00
 % |  
| 
Standardbred | 
100,00
 % |  
 
 | 
 
| Inbreeding Coefficient (The Blood Bank ) | 8,342 % |  
| 
Inbreeding Coefficient (STC) | Not available |  
|   |  
 
 
| Peter the Great | 63 paths, 16 crosses (closest: 5) |  | Spencer Scott | 3 + 4 |  | Volomite | 4y + (4x+4x) |  | Guy Axworthy | 45 paths, 14 crosses (closest: 5) |  | Axworthy | 88 paths, 19 crosses (closest: 5) |  | Hambletonian | 7605 paths, 182 crosses (closest: 8) |  | Peter Volo | 5y + (5+5+6) |  | George Wilkes | 2660 paths, 108 crosses (closest: 8) |  | San Francisco | (5+6) + (6x+6x+7x) |  | Spencer | 5 + (5+6) |  | Axtell | 96 paths, 20 crosses (closest: 6) |  | Mr McElwyn | 4 + 6 |  | Happy Medium | 70 paths, 17 crosses (closest: 7) |  | McKinney | (6+7+8+8) + (7+7+8+8+9) |  | Nervolo Belle (Mare) | (6+8) + (6+6+7) |  | Zombro | (6+7+7) + (7+7+8) |  | Guy Wilkes | 54 paths, 15 crosses (closest: 7) |  | Emily Ellen (Mare) | (6+7) + (7+7+8) |  | Lee Axworthy | (7+7) + (6x+7+8) |  | Lady Bunker (Mare) | 294 paths, 35 crosses (closest: 8) |  | Electioneer | 253 paths, 34 crosses (closest: 8) |  | Bingen | 36 paths, 13 crosses (closest: 8) |  | Princess Royal (Mare) | 6 + (7+7) |  | Todd | (7+8) + (7x+8+8+9) |  | May King | 45 paths, 14 crosses (closest: 9) |  | Young Miss (Mare) | 45 paths, 14 crosses (closest: 9) |  | Onward | (7+9+11) + (9+9+9+10+11x) |  | Baron Wilkes | 8 + (8+8+9+9+9+10+10) |  | Beautiful Bells (Mare) | (8+9+10) + (9+9+10+10+11) |  | The Gaiety Girl (Mare) | (9+9) + (8xm+8x+9+10) |  | Maggie H. (Mare) | (8+10+10) + (9xm+9x+10+10+11) |  | Red Wilkes | 98 paths, 21 crosses (closest: 9) |  | Wilton | 8 + (8x+10x+10) |  | Arion | (9+10) + (9x+9x+10x+10+10+11) |  | Alcantara | 8 + (9+9+10) |  | Minnehaha (Mare) | (9+10+11) + (10+10+11+11+11+12) |  | Harold | 9 + (9+10+11) |  | Almont | 9 + (10+11) |   
 |